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Abstract. This paper shows results obtained in the Automatic Speech Recogni-
tion (ASR) task for a corpus of digits speech files with a determinate noise
level immerse. In the experiments, we used several speech files that contained
Gaussian noise. We used HTK (Hidden Markov Model Toolkit) software of
Cambridge University in the experiments. The noise level added to the speech
signals was varying from fifteen to forty dB increased by a step of 5 units. We
used the Recursive Least Squares Algorithm for an Adaptive Filtering
(RLSAAF) to reduce the level noise and two different wavelets (Haar and
Daubechies). With RLSAAF we obtained an error rate lower than if it was not
present and it was better than wavelets employed for this experiment of Auto-
matic Speech Recognition. For decreasing the error rate we trained with 50% of
contaminated and originals signals to the ASR system. The results showed in
this paper are focused to try analyses the ASR performance in a noisy environ-
ment and to demonstrate that if we are controlling the noise level and if we
know the application where it is going to work, then we can obtain a better re-
sponse in the ASR tasks. Is very interesting to count with these results because
speech signal that we can find in a real experiment (extracted from an environ-
ment work, i.e.), could be treated with these technique and we can decrease the
error rate obtained. Finally, we report a recognition rate of 99%, 97.5% 96%,
90.5%, 81% and 78.5% obtained from 15, 20, 25, 30, 35 and 40 noise levels,
respectively when the corpus mentioned before was employed and RLSAAF
algorithm was used. Haar wavelet level 1 reached up the most important results
as an alternative to RLSAAF algorithm, but only when the noise level was 40
dB and using original corpus.
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1 Introduction

Speech recognition systems generally assume that the speech signal is a realisation of
some message encoded as a sequence of one or more symbols. To effect the reverse
operation of recognising the underlying symbol sequence given a spoken utterance,
the continuous speech waveform is first converted to a sequence of equally spaced
discrete parameter vectors. This sequence of parameter vectors is assumed to form an
exact representation of the speech waveform on the basis that for the duration cov-
ered by a single vector (typically 10ms or so), the speech waveform can be regarded
as being stationary. Although this is not strictly true, it is a reasonable approximation.

Typical parametric representations in common use are smoothed spectra or linear
prediction coefficients plus various other representations derived from these.

The role of the recogniser is to effect a mapping between sequences of speech vectors
and the wanted underlying symbol sequences. Two problems make this very difficult.
Firstly, the mapping from symbols to speech is not one-to-one since different under-
lying symbols can give rise to similar speech sounds. Furthermore, there are large
variations in the realised speech waveform due to speaker variability, mood, envi-
ronment, etc. Secondly, the boundaries between symbols cannot be identified explic-
itly from the speech waveform. Hence, it is not possible to treat the speech waveform

as a sequence of concatenated static patterns.

The second problem of not knowing the word boundary locations can be avoided by
restricting the task to isolated word recognition. As shown in Fig. 1.2, this implies
that the speech waveform corresponds to a single underlying symbol (e.g. word)
chosen from a fixed vocabulary. Despite the fact that this simpler problem is some-
what artificial, it nevertheless has a wide range of practical applications. Furthermore,
it serves as a good basis for introducing the basic ideas of HMM-based recognition
before dealing with the more complex continuous speech case. Hence, isolated word
recognition using HMMs will be dealt with first.

The different sources of variability that can affect speech determine most of diffi-
culties of speech recognition. During speech production the movements of different
articulators overlap in time for consecutive phonetic segments and interact with each
other. As a consequence, the vocal tract configuration at any time is influenced by
more than one phonetic segment. This phenomenon is known as coarticulation. The
principal effect of the coarticulation is that the same phoneme can have very different
acoustic characteristics depending on the context in which it is uttered [Farnetani 97].

Speech recognition-system performance is also significantly affected by the acous-
tic confusability or ambiguity of the vocabulary to be recognized. A confusable vo-
cabulary requires detailed high performance acoustic pattern analysis. Another source
of .recognition-system performance degradation can be described as variability and
noise.
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State-of-the-art ASR systems work pretty well if the training and usage conditions
are similar and reasonably benign. However, under the influence of noise, these sys-
tems begin to degrade and their accuracies may become unacceptably low in severe
environments [Deng and Huang 2004). To remedy this noise robustness issue in ASR
due to the static nature of the HMM parameters once trained, various adaptive tech-
niques have been proposed. A common theme of these techniques is the utilization of
some form of compensation to account for the effects of noise on the speech charac-
teristics. In general, a compensation technique can be applied in the signal, feature or

model space to reduce mismatch between training and usage conditions [Huang at el.
2001]).

2 Characteristics and Generalities

Speech recognition systems work reasonably well in quiet conditions but work
poorly under noisy conditions or distorted channels. For example, the accuracy of a
speech recognition system may be acceptable if you call from the phone in your quiet
office, yet its performance can be unacceptable if you try to use your cellular phone
in a shopping mall. The researchers in the speech group are working on algorithms to
improve the robustness of speech recognition system to high noise levels channel
conditions not present in the training data used to build the recognizer

Robustness in speech recognition refers to the need to maintain good recognition
accuracy even when the quality of the input speech is degraded, or when the acousti-
cal, articulatory, or phonetic characteristics of speech in the training and testing envi-
ronments differ. Obstacles to robust recognition include acoustical degradations pro-
duced by additive noise, the effects of linear filtering, nonlinearities in transduction or
transmission, as well as impulsive interfering sources, and diminished accuracy
caused by changes in articulation produced by the presence of high-intensity noise
sources. Some of these sources of variability are illustrated in Figure 1. Speaker-to-
speaker differences impose a different type of variability, producing variations in
speech rate, co-articulation, context, and dialect, even systems that are designed to be
speaker independent exhibit dramatic degradations in recognition accuracy when
training and testing conditions differ [Cole & Hirschman 92].

Unknown
Unknown Additive Noise
*Clean” Linear Filteri .
Speech 108 Degraded Compensation Compensated

Speech Speech
o T

Fig. 1 Schematic representation of some of the sources of variability that can degrade speech recognition
accuracy, along with compensation procedures that improve environmental robustness.
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3 Automatic Speech Recognition Systems

Automatic Speech Recognition systems generally assume that the speech signal is
a realization of some message encoded as a sequence of one or more symbols. The
ASR is constitutive by: training and recognition stages. Voice is a static procedure
that can to have a duration time between 80-200 ms. a simple but effective mathe-
matical model of the physiological voice production process is the excitation and

vocal tract model.

The excitation signal is assumed periodic with a period equal to the pitch for vow-
els and other voiced sounds, while for unvoiced consonants, the excitation is assumed
white noise, i.e. a random signal without dominant frequencies. The excitation signal
is subject to spectral modifications while it passes through the vocal tract that has an
acoustic effect equivalent to linear time invariant filtering. The model is relevant
because, for each type of excitation, a phoneme (or another structural linguistic) is
identified mainly by considering the shape of the vocal tract. Therefore, the vocal
tract configuration can be estimated by identifying the filtering performed by the tract

vocal on the excitation. Introducing the power spectrum of the signal P, (@), of the
excitation P, (@) and the spectrum of the vocal tract filter F, (@) , we have:
P,(#) = P,(0)P, (@) W

The speech signal (continuous, discontinuous or isolated) is first converted to a se-
quence of equally spaced discrete parameter vectors. This sequence of parameter
vectors is assumed to form an exact representation of the speech waveform on the
basis that for the duration covered by a single vector (typically 10-25 ms) the speech
waveform can be regarded as being stationary. Although it is not strictly true, it is a
reasonable approximation. Typical parametric representations in common use are
smoothed spectra or linear predictive coefficients plus various other representations
derived from these. The database employed consists of ten digits (0-9) for the Spanish
language. Many of the operations performed by HTK (Hidden Markov Model Tool-
kit) which involve speech data assumes that the speech is divided into segments and
each segment has a name or label. The set of labels associated with the speech data
will be the same as corresponding speech file but a different extension.

4 Hidden Markov Models

As we know, HMMs mathematical tool applied for speech recognition presents three
basic problems [Rabiner and Biing-Hwang, 1993] y [Zhang 1999]. For each state, the
HMMs can use since one or more Gaussian mixtures both to reach high recognition
rate and modeling vocal tract configuration in the Automatic Speech Recognition.
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Gaussian mixtures

Gaussian Mixture Models are a type of density model which comprise a number of
functions, usually Gaussian. These component functions are combined to provide a
multimodal density. They can be employed to model the colors of an object in order
to perform tasks such as real-time color-based tracking and segmentation. In speech
recognition, the Gaussian mixture is of the form [Bilmes 98] [Resch, 2001a], [Resch,
2001b}, [Kamakshi et al., 2002] and [Mermelstein, 1975].
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Equation 2-3 shows a set of Gaussian mixtures:
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In 4, the summarize of the weights give us
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Viterbi Trainning

We used Viterbi training, in this a set of training observationsO”, 1<r < Ris
used to estimate the parameters of a single HMM by iteratively computing Viterbi
alignments. When used to initialise a new HMM, the Viterbi segmentation is replaced

by a uniform segmentation (i. e. each training observation is divided into N equal
segments) for the first iteration.

Wavelets Transform

This section shows an introductory description about wavelet analysis, includes a
discussion of different wavelet functions

Windowed Fourier Transform

The WFT represents one analysis tool for extracting local-frequency information
from a signal. The Fourier transform is performed on a sliding segment of length T
from a time series of time step &7 and total length Nét, thus returning frequencies from
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T—1 to (261)—1 at each time step. The segments can be windowed with an arbitrary
function such as a boxcar (no smoothing) or a Gaussian window.

As discussed by Kaiser (1994), the WFT represents an inaccurate and inefficient
method of time—frequency localization, as it imposes a scale or “response interval” T
into the analysis. The inaccuracy arises from the aliasing of high- and low-frequency
components that do not fall within the frequency range of the window. The ineffi-
ciency comes from the 7/(251) frequencies, which must be analyzed at each time step,
regardless of the window size or the dominant frequencies present. In addition, sev-
eral window lengths must usually be analyzed to determine the most appropriate
choice. For analyses where a predetermined scaling may not be appropriate because
of a wide range of dominant frequencies, a method of time—frequency localization
that is scale independent, such as wavelet analysis, should be employed [Torrence

Christopher and Compto Gilbert, 1 198].

Wavelet Transform

The wavelet transform can be used to analyze time series that contain nonstationary
power at many different frequencies (Daubechies 1990). Assume that one has a time
series, x,, with equal time spacing or and n = 0 ... N — 1. Also assume that one has a
wavelet function, yo(n), that depends on a nondimensional “time” parameter 7. To be
«admissible” as a wavelet, this function must have zero mean and be localized in both
time and frequency space (Farge 1992). An example is the Morlet wavelet, consisting
of a plane wave modulated by a Gaussian:

-1/4 _jagn -n*/12

wo(m=n"¢e""e (5]

where ®, is the nondimensional frequency, here taken to be 6 to satisfy the admissi
bility condition (Farge 1992). This wavelet is shown in Fig. 2a.

The term “wavelet function” is used generically to refer to either orthogonal or nonor-
thogonal wavelets. The term “wavelet basis” refers only to an orthogonal set of func-
tions. The use of an orthogonal basis implies the use of the discrete wavelet trans-
form, while a nonorthogonal wavelet function can be used
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Fig.2. Four different wavelets bases. The plots on the left give the real part (solid) and imaginary part
(dashed) for the wavelets in the time domain. The plots on the right give the corresponding wavelets in the
frequency domain. (a) Morlet, (b) Paul (m=4), (c) Mexican Hat (m=2), and d) Mexican Hat (m=6)

The continuous wavelet transform of a discrete sequence xn is defined as the convo-
lution of x, with a scaled and translated version of y,(n):

Wn(s)=§xn-w*[m] 16

\)

where the (*) indicates the complex conjugate. By varying the wavelet scale s and
translating along the localized time index n, one can construct a picture showing both
the amplitude of any features versus the scale and how this amplitude varies with
time. The subscript 0 on y has been dropped to indicate that this y has also been
normalized (see next section). Although it is possible to calculate the wavelet trans-
form using (6), it is considerably faster to do the calculations in Fourier space.
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To approximate the continuous wavelet transform, the convolution (6) should be done
N times for each scale, where N is the number of points in the time series (Kaiser
1994). (The choice of doing all N convolutions is arbitrary, and one could choose a
smaller number, say by skipping every other point in n.) By choosing N points, the
convolution theorem allows us do all N convolutions simultaneously in Fourier space
using a discrete Fourier transform (DFT). The DFT of x, is

-~

1 &8 i27n! N
- by
Xy ———Zx,,e (71
n=0

where k = 0 ... N — 1 is the frequency index. In the continuous limit, the Fourier

transform of a function w(#/s) is given by W (s@) . By the convolution theorem, the
wavelet transform is the inverse Fourier transform of the product:

N-1 < ~

W,(s)= Zxk y*(sw, )eja».n& (8]
k=0

where the angular frequency is defined as

2. <N
o, =1V 2
L2, G N [9)
N&t

Using (8) and a standard Fourier transform routine, one can calculate the continuous
wavelet transform (for agiven s) at all n simultaneously and efficiently.

5 Experiments and Results

The evaluation of the algorithm proposed involved clustering a set of speech data
consisting of 100 isolated patterns from a digits vocabulary. The training patterns
(and a subsequent set of another 200 independent testing pattern) were recorded in a
room free of noise. Only one speaker provided the training and testing data. All train-
ing and test recordings were made under identical conditions. The 200 independent
testing patterns was addition with a level noise, we obtained a total of 1200 new sen-
tences contaminated (200 per noise level, that is because we used 6 noise levels).
After that, we used an adaptive filter to reduce that noise level and the results are
shown below, then we obtained another 1200 sentences. Finally, we made experi-
ments with a total of 2600 sentences (between noisy, filtered and clean sentences) of
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speech signal. Figure 3 shows the RLSAAF employed. For each corpus created, we
used three databases test to recognition task: with same characteristics, noisy and
filtered. All sentences were recorded at 16 kHz frequency rate, 16 bits and mono-
channel. We use MFCCs (Mel Frequency Cepstral Coefficients) with 39 characteris-
tics vectors (differential and energy components). A Hidden Markov Model with 5
states and 1 Gaussian Mixture per state.

W,=W,,+G,e,
1
P = ;[ﬂ-, ~G,x" (k)P

where

Gk = Pk-l x(k)
a;

& =y, —x (k)W

a, =y+x" (k)B,_x(k)

with

x(k) samples

¥y  Jorgetting factor y=0.98
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Fig. 3 Recursive Least Squares Algorithm for an Adaptive Filtering (RLSAAF)

This algorithm stop when the error is lest than 0.9%.

Table 1 shows the results obtained when we used a noisy corpus to training the
ASR. A total of 600 speech sentences were analyzed.

Table 1 Results obtained with noisy corpus created

speech recognition with noisy corpus created
. noise level
Speech signal
recognized 15 20 25 30 35 40
Noisy 95.5 96.5 98.5 98 99.5 99.5
Original 57 725 83,5 915 99 99
Filtered 23 50 76,5 90,5 98 93,5

As we can see, when we used a noisy corpus like we hoped, recognition level with
noisy database was adequately. When we used high S/N rate (25, 30, 35 and 40 dB),
the recognition rate was increased. It is important because it significance that the
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noisy corpus is a good reference. Figure 4 shows a histogram related with the table
contents.

SPEECH RECOGNITION WITH NOISY CORPUS
CREATED

120
100
80 4
60
40 +
20

IN PERCENTAGE

RECOGNITION RATE

NOISE LEVEL

Fig. 4 Graphic representation using noisy corpus created

Table 2 shows the results obtained when we used a noisy and clean corpus to train-
ing the ASR. A total of 600 (300 noisy and 300 clean) speech sentences were ana-
lyzed.

Table 2 Results obtained with noisy and clean corpus created

speech recognition with noisy and clean corpus created
noise level
Speech signal recognized 15 20 25 30 35 40
Noisy 98,5 98 99.5 99 99,5 99,5
Onginal 19 34 84 91,5 96,5 99
| Filtered 78.5 81 90,5 96 95,7 99

As we can see, when we used a corpus compound by noisy and original signals,
the recognition rate for filtered speech signal was increased considerably. Figure 5
shows that.

SPEECH RECOGNITION WITH NOISY AND ORIGINAL
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Fig. 5 Graphic representation using noisy and original corpus
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Table 3 shows the results obtained when we used a clean corpus to training the
ASR. A total of 600 speech sentences were analyzed.

Table 3 Results obtained with clean corpus created

speech recognition with clean corpus created
noise level
Speech signal
recognized 15 20 25 30 35 40
Noisy 99.5 99,5 99,5 99.5 995 99:5
Onginal 16 21,5 18 43 70,5 87
Filtered 185 29 33,5 56 99,5 86,5

With the original corpus the results was not satisfactory, although the recognition
rate with filtered signals was better than noisy signals, it was poor and not enough to
be considered important as figure 6 shows.
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CORPUS
w120 . ;
|, ‘
| < 100 4—— : ——ORIGINAL TEST
| 25 g B i SENTENCES
| 8F & : B —= FILTERED TEST
e o ; T SENTENCES
O w . T ; 5
S o BN et NOISY TEST
Sz SENTENCES
ws o R ——
1 2 3 4 5 6
; NOISE LEVEL
L
Fi

ig. 6 Graphic representation using original corpus created

Finally, we probed different wavelets to try to determine better results than we
obtained above. The results were not that we hoped.

Table 4 Results obtained with clean corpus created and wavelets

Atenuacion Haar1 Haar2 Haar3 dh3n3
15 dB 20,5 12 12 15
20 dB 21 12 11,5 10
25 dB 22,5 13,5 12 21,5
30 dB 21,5 16,5 15 215
35 dB 43,5 13,5 12,5 28
40 dB 74,5 15 14 36
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As we can see in figure 7, only Haar 1 wavelet at 40 dB had a high performance in
ASR rate. We consider that results obtained were failed because noisy level selected
before to apply wavelet transform must be changed. But we consider that it only can

not help us so much.

Wavelets results obtained using original corpus
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Fig. 7 Graphic representation for ASR using wavelets and original corpus

6 Conclusions and future works

The results shown in this paper demonstrate that we can use an adaptive filter to re-
duce the noise level in an automatic speech recognition system (ASRS) for the Span-
ish language. The use of this paradigm is not new but with this experiment we pro-
pose to reduce the problems find out when we tread with real speech signals. MFCCs
and CDHMMs (Continuous Density Hidden Markov Models) were used for training
and recognition, respectively. First, when we used database test with the same char-
acteristics that corpus training a high performance was reached out, but when we used
the clean speech database our recognition rate was poor. The most important results
extracted of this experiment were when the clean speech was mixed with noisy
speech, when we used filtered speech we obtained a high performance in our ASR.

For that, our conclusion is that if we want to construct an ASR immerse in a noisy
environment, it is going to have a high performance if we included in our database
training clean and noisy speech signal. So, if we known the Signal/Noise ratio and it
are greater than 35%, we can use the filtered signal in an ASR without problems. For
future works is recommendable try to probe the results obtained using another meth-
ods employed to reduce noise into signal (wavelets i. e.), and extract the results.
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